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Introduction

The theory of interpolation spaces has its origin in two classical
theorems:

@ The interpolation (convexity) theorem of Riesz-Thorin (M.
Riesz 1926, G.O. Thorin 1939,1948 ).

Theorem (Riesz-Thorin Interpolation Theorem)

Let t € [0,1] and 1 < py, p1, g0, g1 < 0©. Suppose that T is a
bounded linear operator from L”0 to L9 and L”1 to qu Then T is
bounded from LPt to L9, where L 1 ty L oand L =1t —|— L

Pt P1 qt q0
Moreover

1Tl peoae < I T oo Saol Tl a1
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Introduction

@ The interpolation theorem of Marcinkiewicz (1939) with proof
reconstructed by Zygmund (1956).

Theorem (The Marcinkiewicz Interpolation Theorem)

Suppose 1 < pg, p1 and that T is a linear map from L + LP! to
the space of measurable functions such that for some q; > p;

fllp \ %
X x)| > < —= : J=0,1.
Tf A< C HAHPJ 0,1

pl 1=t | t 1 _1-t  t
Then IfP =5+ and o ="+ - for some t € (0,1), then
there exists a constant Cq; such

ITllq < Gl lp-

5/43



Introduction

Abstract interpolation theory was developed after 1960 as
generalization of the Riesz-Thorin theorem to the complex
interpolation method and the Marcinkiewicz interpolation theorem
to the real interpolation method (K-method of interpolation).
The theory of interpolation spaces has application in several
branches of classical analysis but in particular in questions
pertaining to approximation theory. Many applications of the
interpolation theory to approximation can be found in books of
Bergh-Lofstrom [BL], Butzer-Berens [BB] and Petree[P], --- .
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Introduction

The K-method of interpolation

Let A= {Ag, A1} be a pair of Banach spaces both of which are
continuously embedded in some Hausdorff topological vectore
space V.

The Peetre's K-functional is defined for a € Ag + A; and t > 0 by

K(t,a) = K(t,a,A)
= inf{||aoHA0 + t||31HA1 ca=ag+ai, a € Ao, a1 € Al}. (1)

K(t,a) is a positive, increasing and concave function of t. In
particular

K(t,a) < max{L, E}K(s, a).
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Introduction

The K-method of interpolation

The Peetre interpolation spaces Ag’q = (Ao, Al)e,q for0< <1,
1<g<xor0<6<1, g= o0 are given by their norms

Q=

B Joo (70K (t,a) %) if g < oo;
lallo.q = suptK(t, a) if g=ooc.

t>0

This and a more general construction, where the particular
function norm ® . is replaced by general one ® was introduced by
Peetre in 1963 (See Peetre [P]).
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Introduction

A key result in the K-method

Theorem (reiteration theorem)

0 If0<0y<61<1, andifAg1C B CAyc, (i=0,1),
with continuous injections class 0;; then

(Bo, B1)g.q = A(1—0)5-+601.q

for0<f<1andl<qg<oo (/2\071 and /_\171 means the
closure of Ap N A1 in Ag and Az, respectively ).

@ If0<fyg<1landl < qp,q1 < o0, then
(A%,qo’ Aeom)e,q = Aeo,q

(1-9)
90

1 _ 0
for0<0<1and5— +E'
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Introduction

Interpolation of Sobolev spaces

Let Q2 be an open or closed sufficiently regular set in R”, and
WkP(Q), 1<p<oo k=1,2,---, denote the Sobolev space
of all f € LP(Q2) which have D*f for 0 < |a| < k and or which

1l =D ID*fllp < co.

la| <k

Clearly, WOP(Q) = LP(Q). By W*P(Q) we denote the Sobolev

spaces with semi-norm [|f|[xp = > [[D*f||p < 0.

|a|l=k
We will be interested in a precise characterization of the spaces
that arise from interpolation Sobolev spaces.
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Introduction

Interpolation of Sobolev spaces

If h > 0 and k is a positive integer, then define
Qnek={x€Q:x+h, -, x4+ kh € Q} and the k-th order
modulus of smoothness for f in LP(Q2), 1 < p < o0, by

wi(t, F)p = sup [|AK(F, %)l| Loy 4>
[h|<t

k .
where AK(f,x) = S (=1)KCKf(x + ih).

i=0
For0 <a< kand 1< qg<o0ora=kand g=oco define the
Besov space B,/ () of all f € LP(Q) for which the norm

I+ ([ rownte f)p]")‘l’

(with modification for g = c0) is finite.
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Introduction

Interpolation of Sobolev spaces

Theorem (Interpolation of order of smoothness)

For any integers k and m with 0 < k < m < oo

(W’“P(Q), W’""’(Q)) = B2P(Q)

0,q
ifa=(1—-60)k+6mwith0 <6 <1.

The above theorem follows from the reiteration theorem and the
following two assertions:
e If 0 < k < m then

(LP,W™P), | C Wkp (LP,W™P) .
e Ifm=1,2,--- and f € LP(Q) then
w (+m £.1P(OY ViymP(OY ~ o (+ £) (o) 12/43



Introduction

Interpolation of Sobolev spaces

Namely, then

(whe,wme) = (1P, wme)

0,q

(1-0)£+6,g — Bg?

The equivalence (2) when Q = R" was proved by Peetre [P],[P1]
and Butzer-Berens [BB] by using Steklov averages. The general
case of Q is more complicated and was given by Johnen [J] for

n =1 (See also Devore [D], Schumaker [Sch] for case Q = [a, b] )
and Johnen-Schere [JS] for n > 2 (See also Brudnyi [B], Wallin
W] ).

In next section we will obtain analogue of inequality (2) for Morrey
and Morrey-Sobolev spaces and as an application, we characterize
the Nikol'skii-Besov—Morrey spaces.
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Morrey Spaces

Morrey Spaces

The Morrey spaces were introduced by [M], where C. Morrey
studied the local behavior of solutions to elliptic differential
equations. Now the Morrey spaces are used in several branches of
mathematics such as real analysis, PDE and potential theory.

Let 1 < g < p < 0o. Recall that the Morrey space MZ(R”) is the
set of all Lg(R")-locally integrable functions f for which the norm

I laigeny = sup 1013 ( [ IF1oay)*
Mg(R™) QCR? Q ’

is finite, where @ runs over all cubes in R"”. Clearly if p = g,
ME(R") coincides with the Lebesgue space L,(R™). Moreover,
MG (R") coincides with the space Lo (R").
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Morrey Spaces

Morrey Spaces

There are some traditions of how to express Morrey norms. Some
prefer to use the notation:

1

1 q
flljgqmny = sup / fo7] .
H HL)‘(R ) x€R" r>0 (r)\ B(x,r) ’ ( )‘ )

Here, 0 < g < o0 and 0 < A < n. By letting

-3

We obtain ”fHL§ = [[f|lpe- However,in this work one prefers to
use the notation Mj.
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Morrey Spaces

If 1 < g < p < oo, there are difficulties in handling the Morrey
spaces due to the following reasons:

o
2]
o

Unless p/q is fixed, M5(R") do not interpolate well;
The Morrey space M5(IR") is not reflexive;

The space D(R"), the space of all compactly supported
infinitely differentiable functions, is not dense in M5(R™);

The Morrey space M5(IR") is not separable;

The Morrey space M5(IR") is not embedded into
L1(R") + Lo (R™);
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Morrey Spaces

Let —co<a<b<oand1<qg<p<oo. The Morrey space
M05(a, b) is the set of measurable functions f € Lg(a, b) for which
the norm

T =
Q=

Ifllpeapy = sup (B—a)? [flLya,
My = e (50 o)
is finite.
Note that for (c,d) C (a, b),
Ve < 1flaeen;  FEME@D),  (3)

and that for any h € R and for all f € Mf(a+ h, b+ h)
1+ Bl atzoy = IFlaosnssy (4)
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Morrey Spaces

Lemma

Let a,b,c,d € Rsatisfya<c<d<b,andletl <q<p<oo.
If a measurable function f defined on (a, b) is supported on a
subinterval [c, d] of (a, b), then

11l sz ey = IFllatzc,ay:

The next lemma shows that the Morrey norm is local in the
following sense:

Lemma
Let —co<a< b<oo,1<qg<p<oo and let
f e M§(a, b) N Mg(b,2b— a). Then f € Mg(a,2b — a) and

1 Fll pe(a2o-a) < IFll a2 (a,0) + I Fll A (o,26—a2)- (5)
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Sobolev—Morrey spaces

Let —co<a<b<oo,1<g<p<ooandreN. The
homogeneous Sobolev-Morrey space W’ (Mg(a, b)) is defined as
the space of all functions f € L1°°(a, b) for which the weak
derivative (") exists on (a, b) and

e (pazay) = 1 g < 00

(Recall that the weak derivative (") of a function f € L°(a, b)
exists on (a, b) if and only if f is equivalent to a function f such
that ("1 exists and is locally absolutely continuous on (a, b).
Moreover, (") is equivalent to the derivative £(r) which exists
almost everywhere on (a, b). )

The non-homogeneous Sobolev—Morrey space W" (Mg(a, b)) is a
subset of W' (M5(a, b)) consisting of all functions f, for which

1l wr (riz(ap)) lef( g (ap) < 00
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Sobolev—Morrey spaces

Modulus of continuity

For any complex valued function f on (a,b) and h € R, T(h)f is
defined by

T(Mf(x) :=f(x+ h), x€(a—h,b—h).

Let r € N. The r-th difference of f : (a, b) — C with step length
h € R, which is a function defined on (a, b) N (a — rh, b — rh), is
defined by

r

AR =3 (~1) (;) T(hk)f = (T(h) — T(0))'f. (6)

k=0
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Sobolev—Morrey spaces

Modulus of continuity

Definition

Let —co<a<b<oo,1<g<p<oo andlet r e N. The
MZE(a, b)-modulus of continuity of order r of f € M5(a, b) is
defined for t > 0 by

we(f, t; MP(a, b)) := sup ||ALf|

0<|h|<t M5 ((a,b)ﬂ(afrh,bfrh))

ALf

= max<{ sup ‘ , sup HAer . (7
{0<h<t MG(a,b—rh) _t<h<o P ME(a—rh,b) @
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Sobolev—Morrey spaces

Let —oc<a<b<xandl<g<p<oo, reN, and
f € M§(a,b). Then for any m e N

we(f, mt; ./\/lg(a, b)) < m'w,(f, t;./\/lg(a, b)). (8)

Corollary

Let —co<a<b<xandl<g<p<oo,reN, and
f € M§(a,b). Then for any m > 1

wr(f, mt; ME(a, b)) < 2"m"w,(f,t; ME(a, b)). (9)

24/43



Sobolev—Morrey spaces

Corollary

Let —co<a<b<xandl<g<p<oo, reN, and
f e M§(a,b). Then forany 0 < vy <wvp <oo, forall0<t<1

= w, (F, 75 Mg(a, b)) < 27t m"w,(f, £2; Mg(a, b)). (10)

Lemma

Let —co<a<b<xandl<g<p<oo, reN, andlet
f € M§(a,b). Then

wr(f, t; ME(a, b)) <2

|
ME(a,b)

for all t > 0.
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Sobolev—Morrey spaces

Let g € W' (ME(a,b)). Forall t € (272, 222), for almost all

r

€ (a, b), such that x + rt € (a, b) we have

A;g / / X+t1+“'+tr)dt1'~dtr. (11)

We will use (11) to prove the following fact:

Lemma

Let —co<a<b<oo,1<g<p<oo reNand
f e Wr(M§(a,b)). Then

wr(f, t; MB(a, b)) <t [|F)| ypapy,  t>0.
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Sobolev—Morrey spaces

Now we define the Peetre K-functionals related to the Morrey
space M§g(a, b).

Definition

Let —co<a<b<oo,1<g<<p<xandreN. Let

f € M§(a, b). For t > 0, the Peetre K-functional with respect to
the pair M5(a, b) and W" (M5(a, b)) is defined as

K(f,t; MB(a, b), W’ (M?(a,b)))

= inf f— + t)| gt ;
et {1 = etz + el }
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Sobolev—Morrey spaces

and for pair of M4 (a, b) and W' M5(a, b) is defined as
K(f, t; Mg(a, b), W'(M§(a, b)))

= pewintz(an) {17 = ellazion + el (aizom) §

,
_ : k
= inf {Hf — 8l me(ap) tz g )HMﬁ,’(a,b)} .

P
geWr ME(a,b) pare
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Sobolev—Morrey spaces

In the proof of the next theorem, we need the Steklov-type
function Sif for f € M¥(a, b): Let f € M§(a, b) and
0<t< (%)r. Set

Sit(f)(x) — 1 /[0,%], [z’:(_l)/ﬂ (7) f(x+ Iy + -+ hr))]dhl ... dh,

t =1
1
== AL, f(X)dhy - - - dhy + F(x
o gy B 00 )

for x € (a, b — r?y/t) and

S(A(x) = %/{7%’0], [zr:(—u’“ (7) F(x+ 1y + -+ b)) [ by - - db

=
! A f(x)dh dhy +
Tt /[* Gropr thetthe (x)dhy - - - dhr + f(x)

for x € (a+ r?v/t, b).

(12)

(13)
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Sobolev—Morrey spaces

Theorem

Let | C R be an infinite interval, r e N and 1 < g < p < co. Then

there exist ci(r), ca(r) > 0 depending on only on r such that for all
fe M5(I)NW" (ME(I)) and for all t > 0, we have

c(r) wo (F, V& ME(D)) < K (f, £ ME(1), W* (Mg(/)))
< a(r) we(F,Vt; ME(1)). (14)

30/43



Sobolev—Morrey spaces

Theorem

Let —co<a<b<oo, réeNandl<qg<p<oo. Then there
exist c3(r), ca(r) > 0 depending only on r such that for all
fe W (Mf(a, b)), we have

c3(r) ([l Fllaeapy + Y wi(f, ¥ M5(a, b))
k=1
< K(f, t; ME(a, b), W™ (M&(a, b))) (15)

for all t > 0, where [t]; := min{t,1}; and
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Sobolev—Morrey spaces

K(f,t; MP(a, b), W' (MBE(a, b)))
<a(r) 1+ (b—2a)7") |thfllaeas + O wi(f, ¥/t ME(a, b))
k=1

(16)

forall 0 < t < mln{ 32 ,1}.
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Interpolation theorems

Definition (Homogeneous Nikol'skii-Besov-Morrey spaces)
For)\>0,r€N,r>)\,1§s§oo,1§q§_p§oothe
homogeneous Nikol'skii-Besov-Morrey spaces B3 (M5(a, b)) are
defined as the spaces of all measurable functions f defined on

(a, b) for which

1
o sdt ;

. — —A - AP

||f|sz,,(M5(a,b))_{/0 (t w,(f,t,/\/lq(a,b))) t} < 0.

Theorem 14 immediately implies the following result.
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Interpolation theorems

Theorem

Let0<0<1,1<g<p<oo, reNand0<s<oo. Assume
that (a, b) C R is an infinite interval. Then

(Mz(a, b), W (M5(a, b) )9)5 = BIrr(ME(a, b)).

Moreover, there exist cs(r), cg(r) > 0 depending only on r such
that

s (NIl gorr

"(M3(a,8) S ”fH(M" (a,b), Wr(M5(a, b)))

< (NIl gorr(amza, b))

for all f € M5(a, b) N W™ (M5(a, b)).
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Interpolation theorems

In its turn Theorem 15 implies the following result.

Theorem

Let0<6<1,1<qg<p<oo,reN 0<s<ooand(ab)CR
Then

(M2 0), W7 (MGG, 0)) ) = ME(a, 5) (] (Mt B H (M2, ) -

Moreover, there exist c7(r), cg(r) > 0 depending only on r such
that

_1 1 "
cr(r)gs s (6(1—0))s Hf\lMg(a,b) + >0 Hf”BSGk,k(MZ(a,b))

k=1
(M5(a.b), W’(Mp ab)))es
. ;
< 1 b—a)~" T s (6(1—0))s ||f fl| .
<a) ((1+k-2 )){s (00 = OD% 1l pgpa i + 2 ussgk,kws(a,b))}

for all f € M5(a, b) Ns_, Be“* (M5(a, b)).
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